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The HiFi-TURB project has as objective to improve TU-models in presence of 
separation, based on the following:

• The exploitation of high-fidelity LES/DNS data for a range of reference flows 
that contain key flow features of interest

• The application of novel artificial intelligence and machine-learning algorithms to 
interrogate the data with the objective to identify significant correlations between 
representative turbulent quantities

• The guidance by world-renowned industrial and academic experts in turbulence
o Philippe Spalart; Florian Menter; Stefan Wallin; Suad Jakirlic; Michael Leszchiner; Wolfgang Rodi; 

Stefan Hickel; Maria-Vittoria Salvetti

• HiFi-TURB Partners
o Industry: Cadence-Belgium (formerly Numeca); Safran; Dassault Aviation
o Research Centers: BSC; ONERA; DLR; CERFACS; CENAERO; ERCOFTAC
o Universities: Bergamo; Imperial College; UCLouvain
o Associate Partner: NASA-RCA (M; Malik, C; Rumsey)

HiFi-TURB - High-Fidelity LES/DNS Data for Innovative Turbulence Models
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HiFi-TURB overview

Generation of high-
fidelity reference data
(statistical quantities)

Analysis of statistical 
turbulence data

ML driven turbulence 
modelling approaches

EARSM/DRSM 
modelling framework 
driven by expert task 

group

Validation of new 
turbulence models

Expert guided ML model 
development
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WP3 Test cases

 

 

Uzun & Malik, 2018 Apsley & Leschziner, 2001 Cherry et al, 2008 
TC01:  
Adverse Pressure 
Gradient Experiment 
Reτ ≈ 4179 (related to 
channel)  

TC02:  
MTU T161 Cascade 
Re = 200,000 
 

TC03:  
Bachalo-Johnson – 
axisymmetric bump 
Re=1.6 million 

TC04:  
3D Wing-Body 
Junction 
Re=115,000 

TC05:  
3D (Stanford) 
Diffusor 
Re=10,000 to 30,000 
www.kbwiki.ercoftac.org/w/i
ndex.php/abstr:ufr_4-16 

Physics to be 
modelled: 
Adverse pressure 
gradient; pressure-
induced separation and 
reattachment 

Physics to be 
modelled: 
End-wall boundary 
layers and corner flows 

Physics to be 
modelled: 
Transonic shock-
boundary layer inter-
action; Shock/curvature 
induced separation. 

Physics to be 
modelled: 
External Corner flow;  
3D separation 

Physics to be 
modelled: 
Internal corner flows;  
3D separation 

Test-case Team: 
DLR, UNIBG, 
CENAERO, DASSAV 

Test-case Team: 
ICL, CENAERO, 
NUMECA, UNIBG 

Test-case Team: 
CENAERO, ONERA, 
UNIBG 

Test-case Team: 
ONERA, CERFACS, 
ICL, DASSAULT 

Test-case Team: 
NUMECA, SAFRAN, 
BSC 
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• For each of the testcases, all statistical averaged terms entering in the Re-
Stress transport equations are stored, plus some basic additional turbulent 
quantities, for a total of ±175 quantities

• This represents a huge amount of data, to be analyzed by Big data, AI and ML 
technologies, to search for new meaningful correlations

• One important point is the definition and coordination of the computational 
campaign since several groups will investigate the same case, including quality 
criteria for the data sets in terms of spatial, temporal and statistical 
convergence. 

WP3 Highlights
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• WP4 is concerned with the analysis of the basic turbulence-averaged data 
coming from high-fidelity DNS datasets generated in WP3 by means of 
statistical analysis and machine learning technologies (ML)

• Analysis of basic turbulence-averaged data via data driving 
methodologies focusing on RSM (DRSM, EARSM)

• In this ML context, a main focus is respecting basic physics: 
o proper Re-number scaling, 
o Galilean invariance – including invariance to moving systems,
o asymptotic behaviour at boundary-layer edge, log-law consistency, 
o locality vs non-locality  

WP4 Highlights
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• Work Package 5: Turbulence modelling assessments and improvements –
monitored by WP5 Task Group
o Task 1: Develop, improve and assess EARSM turbulence models
o Task 2: Develop, improve and assess DRSM turbulence models
o Task 3: Develop, improve and assess wall models for WMLES and Hybrid RANS-LES

• Work Package 6: Validation of new turbulence models applied to 
representative and industrial relevant test cases
o Task 1: Validation on external flow configurations (High-Lift and Drag Pred. WS cases
o Task 2: Validation on internal flow configurations for fixed (diffusor) and rotating. cases
o Task 3: Assessment & recommendations

• Work Package 7: Management of the LES/DNS databases for open 
accessibility (ERCOFTAC)
o Task 1: Definition of database criteria and implementation rules
o Task 2: Creation and management of the LES/DNS database
o Task 3: Integrating results of WP6 in the ERCOFTAC Wiki Knowledge Base

Hifi-TURB Highlights
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WP6 Validation cases

  3rd High-lift prediction 
workshop, 2017 Rumsey, 2018  

 

TC06: 
Rotor 37 
 

TC07: 
LMFA – NACA65 
 

TC08a / TC08b:  
(a) NASA-CRM 
DPW, (b) High-
Lift onfigurations 

TC09: 
NASA Juncture 
Flow 
 

TC10 - confidential: 
1.5 axial stage 
compressor 

TC11 - confidential: 
Falcon business jet 
in cruise & landing 
configuration 

Physics to model  
Tip vortices, corner 
separation, shock-
boundary layer 
interaction 

Physics to model  
Compressor 
cascade; corner 
flow separation 

Physics to model  
Turbulence model 
adapted to strong 
separation zone 

Physics to model  
Wing-body corner 
separation 

Physics to model  
Near-stall 
performance 

Physics to model  
External flows incl. 
separation; whole 
aircraft 

Test-case leader: 
NUMECA 

Test-case leader: 
SAFRAN 

Test-case leader: 
ONERA 

Test-case leader: 
DLR 

Test-case leader: 
SAFRAN 

Test-case leader: 
DASSAV 
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Expert guided ML model development
Major novel approach for EARSM by Stefan Wallin

Computation of statistically averaged quantities from high-fidelity simulations
• Using the approach for EARSM the terms that need modelling are computed exactly from the 

high-fidelity data: Beta terms for EARSM and invariants
à This forms the data on which the ML approaches act
• The data is either selected manually from the high-fidelity dataset or via the Variational Auto-

Encoder tool

1. Multiple Expression 
Programming (MEP)
• Let the computer find a 

mathematical model in 
function of invariants

2. Optimization tool for 
expressions
• Develop/tune handcrafted 

expressions vs the data
• Fine-tune MEP found 

expressions vs the data

3. Variational Auto-Encoder tool
• Quasi-exact representation of 

the high-fidelity data via a ML 
surrogate

• Physical insights through the 
nature of the ‘embeddings’

• Extremely fast access to the 
data for extraction and a priori 
testing vs. heavy CPU intensive 
process without the VAE

M
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in
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Multi-Expression Programming (MEP)

• Multi Expression Programming (MEP) uses 
evolutionary algorithms to regress a 
mathematical expression from a set of data.

• Derived from the MEPX library [1], 
implemented in C/C++,  with a high level 
python interface.

• In its most basic format:
o Each chromosome stores an overall fitness: best 

fitness within a given complexity. 
o Fitness is evaluated for each element of the table.
o The complexity associated with each operation 

and variable is set as an input parameter. 
o Constants do not add complexity to the 

expression. 
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Variational Auto-Encoder (Cadence and partner Neural Concept)
• The Variational Auto-Encoder (VAE) is a type of Artificial Neural Networks (ANN)

o The applied Geodesic Convolutional Neural Network (CNN) can be directly 
applied to an unstructured cloud of points, this is in contrast to standard CNNs 
which act on structured data such as they are presented by pixels in images 

• Variational Auto-Encoders enforce smoothness constraints on the space of the 
embedding and allow for a physical interpretation

• An exact representation of the high-fidelity data can be constructed
o Work easily with the data in a web-browser vs. HPC infrastructure
o Analysis and data extraction based on the VAE
o A priori model testing
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Variational Auto-Encoder applied to Stanford diffuser

• Extraction of functional 
dependency of beta1

• The colors in the Cartesian plots 
correspond to the locations in the 
3D view

• à Use this insight to select 
the data used for both manual 
and ML driven model 
development
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• The 5-term representation (Pope 1975; Wallin & Johansson 2000) has been 
found to be practical sufficient and not over-complex. 

• Any algebraic relation of 𝑎!" 𝑆!", Ω!" can be mapped on these 5 terms.

𝑎!" = &
#$%

&

𝛽#𝑇!"
#

where
𝑇!"
% = 𝑆′!", 𝑇!"

' = 𝑆′!#Ω′#" − Ω′!#𝑆′#",

𝑇!"
( = Ω′!#Ω′#" +

1
3
𝑟𝛿!", 𝑇!"

) = 𝑆′!#Ω′#*Ω′*" + Ω′!#Ω′#*𝑆′*" −
2
3
𝐼𝑉′𝛿!" + 𝑟𝑆′!",

𝑇!"
& = Ω′!#𝑆′#*Ω′*+Ω′+" − Ω,!#Ω,#*𝑆,*+Ω,+" −

1
2
𝑟 𝑆′!#Ω′#" − Ω′!#𝑆′#" .

The novel EARSM framework---by Stefan Wallin

𝑆!" , Ω!" =
1
𝑠
𝜕𝑈!
𝜕𝑥"

±
𝜕𝑈"
𝜕𝑥!

𝑠 = grad 𝑼
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The strain- and rotation rate tensors are normalized with 𝑠

𝑆′!" =
𝑆!"
𝑠
, Ω′!" =

Ω!"
𝑠
.

Hence, the invariants are connected so that 𝐼𝐼′< − 𝐼𝐼,= = 1 and we introduce 𝑟

𝐼𝐼′< =
𝐼𝐼<
𝑠'

= 1 − 𝑟, 𝐼𝐼,= =
𝐼𝐼=
𝑠'

= −𝑟,

and normalize also the higher invariants as

𝐼𝐼𝐼′< =
𝐼𝐼𝐼<
𝑠(

= 𝑆′!"𝑆′"#𝑆′#!, 𝐼𝑉, =
𝐼𝑉
𝑠(
= 𝑆′!"Ω′"#Ω′#!,

𝑉, =
𝑉
𝑠)
= 𝑆′!"𝑆′"#Ω′#*Ω′*! +

1
2
𝑟 1 − 𝑟 .

The novel EARSM framework---by Stefan Wallin
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• All invariants are, hence, normalized by the magnitude of the strain rate, 𝑠, and 
can be seen as “structure parameters” providing the principal directions. The 
consequence is also that the two 2nd invariants, 𝐼𝐼> and 𝐼𝐼=, can be replaced by 
one single variable 𝑟.

• One additional measure is then needed to complete the representation (as 
derived from the EARSM solution). That is the “equilibrium parameter” 𝜎,

𝜎 =
𝑠𝑘
𝜀
,

which is then the only parameter dependent on 𝜀. The variable 𝜎 will measure the 
state of equilibrium by relating the turbulence to mean-flow time scales. 

Flow in equilibrium will have 𝜎 of order unity and the rapid distortion limit is 
characterized by 𝜎 → ∞. Hence, any dependency on 𝜎 must approach a constant 
for 𝜎 → ∞.

The novel EARSM framework---by Stefan Wallin
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The different 𝛽# are now functions of 𝜎 and the invariants, 𝛽# 𝜎, 𝑟, 𝐼𝐼𝐼<, 𝐼𝑉, 𝑉 . The 
first term 𝛽% corresponds to the eddy-viscosity part with an effective coefficient

𝐶?@AA = −
1
2𝜎

𝛽%

Interestingly, the effective eddy viscosity becomes independent of 𝜀

𝜈B@AA = −
1
2
𝑘𝛽%
𝑠

The production is related to the invariants as

−
𝑃
𝑠𝑘

=
𝑎!"𝑆"!
𝑠

= 𝛽% 1 − 𝑟 + 𝛽(𝐼𝑉 + 2𝛽)𝑉.

In 2D mean flows 𝐼𝑉 = 𝑉 = 0 and

−
𝑃
𝑠𝑘

= 𝛽% 1 − 𝑟 .

The novel EARSM framework---by Stefan Wallin
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• The 2D EARSM solution is here used for illustrating a possible functional behavior for P/sk and 
the β1,2 coefficients vs. the parameters σ and r. 

• P/sk and β1 are related by definition and shown in Figure 1. β2 is not monotonic in r, but β2/(β1 
σ) is. Hence, parameterization of β2/(β1 σ) might be more easily found than that of β2 directly.

Fig. 1: The alternative EARSM solution for 𝝈 from 0-10 and 𝒓 = 0.0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0 (colours consistent with 
the curves). The green dot (•) is the log solution with 𝑷 = 𝜺. The green dashed lines are eddy-viscosity model with 𝑪𝝁 =
0.09. Left: β1; Middle: P/sk; Right: β2/(β1 σ) 

2D EARSM solution 
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Summary of New EARSM Model and ML Approach
• EARSM: novel framework within HiFi-TURB

o 𝑺 and 𝜴 are normalized by their magnitude 𝑠
o Invariants become “structure parameters”
o limited in magnitude, independent of 𝜺
o 𝑟 = 𝜴#/ 𝑺# + 𝜴# – vorticity/swirl measure (0-1)
o 𝐼𝐼𝐼, 𝐼𝑉 and 𝑉 – measure of 3D effects (=0 in 2D)
o Only one non-equilibrium parameter: 𝜎 = 𝑠𝑘/𝜀

• Additional pros
o Machine-learning problem much better posed
o Invariants have a clear physical interpretation
o Data completeness easily illustrated
o Alternative parameters more easily added

• Cons
o Singularities for 𝑠 → 0 (can be handled)

• Local data
o Output: Five 𝛽-coefficients representing 

𝑎!" = 𝛽$𝑇!"
($)

o Minimizing S𝛽$ − 𝛽$ , 𝛽$ extracted from data
o Using MEP/Auto-Encoder to find expressions

• Consequences
o Physics more clearly decomposed on the 

different 𝑇!" ’s
o 𝛽$ from data -> physical interpretation
o Realizability outside of data range better kept
o Big step forward (Sandberg and others)
o Frame invariance enforced
o However, resulting “model” not really general
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The MEP-0 Model From BSC (Mirò, Lehmkuhl)

• Multi Expression Programming 
(MEP)

• Data: Stanford 3D diffuser (DNS by 
BSC)

• Resulting expression from MEP
• No additional tuning or fitting to 

“standard values” are made

The model does not make much sense for a modeller …



© 2022 Cadence Design Systems, Inc. All rights reserved.22

Other Approach

• EARSM data generator
o Use EARSM for generating 

synthetic data for meta 
training (training of training)

o Invented and optimized 
approximate functions for 
synthetic data

o Used to initiate MEP

Example of person-made function (PMF)
𝛽% = −0.591 𝑓% + 𝑓U𝑓'
𝑓% = 1 − exp −1.295𝜎
𝑓' = 𝜎'/ 12.297 + 𝜎'

𝑓U = −0.672 2𝑟 − 1 − 0.502(
)

2𝑟 −
1 ^2
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Preliminary Results

• Analytical model checking (upper fig)
o Limit of 𝜎 → 0: 𝛽" → 0
o RDT limit of 𝜎 → ∞: 𝜕/𝜕𝜎 → 0
o Log layer fix point P/𝜀 = 1, 𝑟 = 0.5
o Homogeneous shear-layer fix point P/𝜀 = 1.8
o Bradshaw assumption captured by MEP-0

−𝑎#$= 0.3
o Non-realizable red zones avoided by MEP-0

• A-posteori testing (lower fig)
o Automatic model implementation
o MEP model formulation as input
o Channel flow solved within seconds – can be used 

”in the loop” of MEP
o MEP-0 model gives 𝜅 = 0.38

Surprisingly close to reference!

EV
MSa
id
i

Sandberg

EA
RS
M

MEP-0

Hom.
shearLog

layer

! = #$/&

−(
!"

Fix point solution (2D, parallel shear)

!!
"!

EVM
Sandberg

Saidi

MEP-0

!"!
= 10

"

!"!
= 10

#

Fully developed channel (a-posteori)
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Requirements on Data

• Data should contain all five 𝜷’s being non-zero
• Data should contain all invariants in their complete ranges

o 𝑟 – relative rate of rotation (0-1)
o 𝐼𝐼𝐼, 𝐼𝑉 and 𝑉 – measure of 3D effects (=0 in 2D)
o 𝜎 = 𝑠𝐾/𝜀 – non-equilibrium parameter

• We don’t see sufficient variation in our data
o Data lives in 𝑟 ≈ 0.5, 𝐼𝐼𝐼, 𝐼𝑉, 𝑉 ≈ 0 and 𝑇!"

# , 𝑇!"
$ ≈ 0.

• Lack of data variation – problem is underdetermined
o Std. approach taken by others – problem is “hidden”
o With the present approach - problem is visible and can possible be handled

• ML strategy
o Unintelligent approach will fail
o ML approach must be guided by physical knowledge
o Can we use synthetic data from EARSM to guide through the wilderness?

• Data from separated curved step 
and from 3D Stanford Diffuser are 
mostly around 𝒓 ≈ 𝟎. 𝟓
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First Validations, MEP-0 and manually derived 
model from A-E (Dirk Wunsch-Cadence)
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Case description
Solver description:
• Finite-volume density-based solver (OpenTM) with low-speed preconditioning, local-time 

stepping, residual smoothing and full-multigrid acceleration with central scalar scheme.
• Three models tested:

o S-BSL EARSM of Menter et al (2012) as reference
o BSL MEP0 NLEVM from Wallin et al (2022)
o BSL DIRK NLEVM from Wunsch et al (2022)

• During coarse-grid initialization, CFL = 1 and, on the fine grid, CFL = 2.
• 3 grid levels for the multi-grid.
Computation settings
• Turbulent flat plate with a length of 4 m
• Freestream velocity: 68.79 m/s 
• Kinematic viscosity: 3 10-5 m2/s
• Reference data: Weighardt and Tillman (1951), Klebanoff (1955)
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Results: Turbulent Fluctuations
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Results: shear stress
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Results: streamwise velocity profiles

Comments from Stefan Wallin: I find it extraordinary that the basic log layer is so accurately 
captured from the rather low Re 3D diffuser data with all its complexity. There are limited log 
regions in the data though, but one could suspect that it will be drowned in the vast amount 
of data with high complexity.
More tests are underway.
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The road to Scale Resolving Industrial Simulations
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From Spalart & Strelets (2019)

• Traditional turbulence modeling is challenged from two sides:
o Turbulence-resolving simulations

– These are promising, but far from industry practical. We need many exaflops
– The flow fields have some very “interesting” features…
– We contend that DES is cleaner, and will deliver well before WMLES and VLES

o Artificial intelligence
– We contend that this work is still in its infancy, and much of it is simply unsuccessful
– A lot of “adult supervision” is needed
– Did we the “adults” fail to explain modeling (too bad Wilcox’s book is now rare)?

The road to Scale Resolving Industrial Simulations
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• Numerous papers have been published on the grid point requirements for WRLES and DNS

• More recent ones from Yang & Griffin (2021); Choi & Moin (2012) and various presentations by 
Spalart and Strelets 
o These estimates rely on assumptions on the number of grid points per cube (nxnynz) and time steps 

estimates assuming explicit time integration

• According to M. Strelets N_cubes ~ 6 10^6 would be required for a swept wing, and on a high-lift 
wing, with 3 LE, this would lead to 2 10^7 cubes. And assuming 20^3 DOF per cube, leads to 
160 billion points for the boundary layer. Not counting some 10^4 time steps.

• Note: such a high resolution is perhaps not required for an engineering accuracy of 1 count (E-
4)

Moreover two additional elements might be a game changer

• High Order Methods

• GPU technology, beyond Moore’s law

Cost estimates for WRLES/DNS
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The disruptive numerical features of HO

• Low order schemes (less than 3rd order) fail in predicting wave 
propagation dominated flow cases, on acceptable mesh sizes 

• This can be seen from the convection of a vortex, comparing second 
order to 4th order accuracy with same number of data points (16000). 
• After having been transported 47 times through the width of the passage, 

the vortex is completely dissipated by the second order scheme, while it is 
still unchanged by the 4th order method, on the same number of data 
points

• Another view: A second order code requires 40 to 50 points per 
wavelength to represent accurately a propagating wave or signal over 
longer times, while a 4th order code requires only 5 points per 
wavelength

• This difference means that a second order code will require a mesh of 
500 to 1000 million points to reach the accuracy of a fourth order code 
on a mesh of 1 million points.
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HPC Capacities in the Near Future
H1OO NVIDIA GPU
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Fidelity/HO New Scale Resolving Industrial Product
High-Order iLES Integrated WorkflowState-of-the-art algorithms (Flux 

Reconstruction)

Multigrid compatible 
regularization

HN support

Efficient convergence 
acceleration for steady & 
unsteady via dual-time-

stepping

Scalable distributed 
parallel, GPU compatible 

implementation.
1 GPU >= 250 CPU cores

CAD & Geom
preparation

High-Order curved 
mesh 

generation/import

Precursor + HO 
simulation

Postprocessing

TGV

T106-C

T161
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Automatic curved meshing

Rotating wheels with 
grooved tires

Mesh size around 5M points
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Massive GPU acceleration
• The numerical nature of HO allows for massive 

GPU acceleration

• The current version of the solver achieves
speed-up of 1 GPU equivalent to 250 CPU’s

• 1 GPU node contains 8 NVIDIA A100 GPU’s
and 64 CPU’s

• This enables 1-day return time on a few GPU 
nodes for LES on industrial automotive
configurations; accuracy of 2-3 counts (E-3) for 
±150 MDoF

• At a fixed simulation time, GPU computing is up 
to 3X cheaper4 GPU Nodes

26hr, $3408

20 CPU Nodes
81hr, $7458

Fidelity 2022.2 
GPU Projection
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• High Order solvers allow a gain of 3 orders of magnitude in required number of 
points

• Full GPU optimization should allow another gain of 2 orders of magnitude in the 
ExaFlops projections

• Restricting to engineering accuracy, we estimate another potential gain of 2 
orders of magnitude (to be confirmed)

• Our HO industrial solver is parameter free, based on first principles
The Challenge:
• Define appropriate meshing best practices for coarse curved grids, providing 

ILES (WRLES) accuracy on various industrial configurations
• Current Applications: Automotive and Turbomachinery
• Aeronautical applications for H1-2022, with DES and ILES options to be 

demonstrated

Summary on industrial WRLES in the near future
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